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Roughness effects in turbulent pipe flow
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Mean flow measurements are presented for fully developed turbulent pipe flow over a
Reynolds number range of 57 × 103 to 21 × 106 where the flow exhibits hydraulically
smooth, transitionally rough, and fully rough behaviours. The surface of the pipe
was prepared with a honing tool, typical of many engineering applications, achieving
a ratio of characteristic roughness height to pipe diameter of 1 : 17000. Results
for the friction factor show that in the transitionally rough regime this surface
follows a Nikuradse (1933)-type inflectional relationship rather than the monotonic
Colebrook (1939) relationship used in the Moody diagram. This result supports
previous suggestions that the Moody diagram in the transitional regime must be used
with caution. Outer scaling of the mean velocity data shows excellent collapse and
strong evidence for Townsend’s outer layer similarity hypothesis for rough-walled
flows. Finally, the pipe exhibited smooth behaviour for scaled roughness height
k+

s � 3.5, which supports the suggestion by Zagarola & Smits (1998) that their pipe
was hydraulically smooth for ReD � 24 × 106.

1. Introduction
The general behaviour of turbulent pipe flow in the presence of surface roughness is

well established. For a given surface finish, the roughness is often described in terms
of a characteristic roughness height k. This characteristic height may be taken as
the root-mean-square roughness height krms , or the ‘equivalent sandgrain roughness’
height ks defined by Nikuradse (1933). When k is small compared to the pipe diameter
D, the flow behaviour changes with increasing Reynolds number. At low Reynolds
numbers, the flow is smooth (there is no effect of roughness). As the Reynolds number
increases, the flow becomes transitionally rough (the friction factor rises above the
smooth value and is a function of both roughness height and Reynolds number), and
eventually becomes fully rough (where the friction factor is independent of Reynolds
number). In terms of the viscous length scale ν/uτ (where uτ ≡

√
τw/ρ, ν is the fluid

kinematic viscosity, τw is the wall shear stress, and ρ is the fluid density), the flow is
smooth when k+ = kuτ/ν is small, and fully rough when k+ is so large that viscosity
is no longer important. In the fully rough regime, the wall shear varies quadratically
with the velocity, implying that form drag on the roughness elements is the principal
source of the streamwise pressure drop.

With respect to the velocity profile, roughness disrupts the viscous sublayer and
causes the non-dimensional velocity U/uτ in the overlap region, commonly identified
with a logarithmic velocity distribution, to shift down without changing its slope. At
sufficiently high Reynolds numbers, or large enough relative roughness ε (= k/D), the
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velocity becomes independent of viscosity, although it retains its logarithmic distribu-
tion. In the outer region of the flow, it is expected that roughness manifests itself only
in terms of a changing wall stress, so that the velocity profile in outer layer coordinates
is unaffected by roughness, assuming, of course, that k remains small compared to D.
This is known as Townsend’s (1976) hypothesis of outer layer similarity.

Interest in the effects of roughness on wall-bounded turbulence is being driven by
a number of recent developments. Krogstad & Antonia (1999) noted that symptoms
of roughness can be measured in the outer flow, which would invalidate Townsend’s
hypothesis. Flack, Schultz & Shapiro (2005) suggested that the roughness elements
used by Krogstad & Antonia (1999) were a significant fraction of the boundary
layer thickness, which may have influenced their results. The work of Flack et al.
(2005) shows a universal collapse in the outer layer, even though their largest non-
dimensional roughness height was significantly larger than that used by Krogstad &
Antonia (1999). Jiménez (2004) makes the point that experiments with both a large
k+ and a small ε = k/D (or k/δ, where δ is the 99 % thickness) are required to resolve
these apparent contradictions.

The question of when roughness effects first become important was discussed by
Perry, Hafez & Chong (2001), McKeon et al. (2004) and McKeon, Zagarola & Smits
(2005). This discussion hinges on the influence of roughness in the transitional regime,
an issue that has been the subject of controversy since the work of Nikuradse (1933)
was first published. It also touches on how the characteristic roughness height can be
determined for an arbitrary roughness distribution, and whether a single length scale
is an adequate description.

Here, we describe experiments in a honed pipe with krms/D =19.4 × 10−6, over a
range of Reynolds numbers from 57 × 103 to 21.2 × 106, where k+

s varies from 0.17
to 44.4. The honed surface finish was chosen because of its industrial importance,
and also because the results can be compared to those obtained by Zagarola & Smits
(1998) and McKeon et al. (2004) for a similar surface finish with krms/D = 1.16 × 10−6.
The results presented here are the first to show the entire progression from smooth
to fully rough behaviour for an extremely small value of krms/D.

2. Flow scaling
In terms of the skin friction, we expect that

τw = φ(U, D, ν, ρ, k) (2.1)

where U is the average or bulk velocity, and φ denotes a functional dependence. For
a pipe flow, therefore, the friction factor λ varies according to

λ = φ1(ReD, k/D) (2.2)

or, equivalently,

λ = φ2(ReD, k+) (2.3)

where λ≡ 8τw/(ρU
2
), and ReD = UD/ν. Note that for fully developed flow, 4τw/D =

−dp/dx, where dp/dx is the streamwise pressure gradient. There is no universal
friction factor curve for rough pipe flow, but for smooth pipes McKeon et al. (2005)
found that the curve

1√
λ

= 1.930 log(ReD

√
λ) − 0.537 (2.4)

fits pipe flow data for 31 × 103 � ReD � 35 × 106 to within 1.25 %.
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In terms of the mean velocity distribution for negligible roughness, we start with
the usual distinction between the inner and outer layers, where for the inner layer

U = f1(y, uτ , ν, R) (2.5)

and for the outer layer

UCL − U = g1(y, uo, ν, R) (2.6)

where U is the mean velocity, UCL is the centreline velocity, R is the pipe radius
(D = 2R), and uo is the outer layer velocity scale (as defined by Zagarola & Smits
1998). Hence,

U

uτ

= f2(y
+, R+) (2.7)

and
UCL − U

uτ

= g2(η, R+) (2.8)

where y+ = yuτ/ν, R+ = Ruτ/ν, and η = y/R. If we confine our attention to Reynolds
numbers sufficiently high such that the inner and outer scales are independent of R+,
then

U+ = f (y+) (2.9)

for the inner flow, where U+ = U/uτ , and

U+
CL − U+ = g(η) (2.10)

for the outer flow. Under these conditions, complete similarity in Reynolds number
applies. Millikan (1938) proposed that, for ν/uτ � y � R, an overlap between the
inner and outer regions may exist, where by matching the velocity gradient we obtain
for the inner layer:

U+ =
1

κ
ln y+ + B (2.11)

and for the outer layer:

U+
CL − U+ = − 1

κ
ln η + B∗. (2.12)

According to McKeon et al. (2004), von Kármán’s constant κ = 0.421 ± 0.002,
B = 5.60 ± 0.08, and B∗ = 1.20 ± 0.1.

With increasing Reynolds number and a fixed pipe diameter, the viscous length
scale ν/uτ decreases relative to D and may become comparable to the characteristic
roughness height, k. At this point, roughness will start to play a role in determining the
flow characteristics. Under conditions of complete similarity, the inner layer scaling
becomes

U+ = f (y+, k+). (2.13)

If we assume, as argued by Towsend (1976), that roughness only affects the outer
layer scaling by modulating the wall stress (that is, by changing uτ ), then the outer
layer formulation is independent of the direct effects of roughness and equation (2.10)
continues to hold for rough wall flows. The overlap argument in this transitionally
rough regime gives

U+ =
1

κ
ln y+ + B − 	U+ (2.14)

where 	U+ is Hama’s (1954) roughness function that depends only on k+. With
further increases in Reynolds number, or if the roughness height is made larger, a
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point will be reached where the inner scaling no longer depends on viscosity, and

U+ = f
(y

k

)
. (2.15)

The overlap argument in this fully rough regime gives

U+ =
1

κ
ln

y

k
+ B ′. (2.16)

Here, B ′ is called the Nikuradse roughness function, and it is expected to be constant
when the flow is fully rough. From equations (2.14) and (2.16), we see that in the fully
rough regime the Hama roughness function behaves according to

	U+ =
1

κ
ln k+ + B − B ′. (2.17)

Since the wall shear stress in the fully rough regime is a function of the square of the
velocity, it is often assumed that the flow resistance in the pipe is akin to a form drag.
Bradshaw (2000), however, notes that the concept of a critical roughness height for the
onset of roughness may be erroneous, and that the data of Nikuradse (1933) for the
size of the velocity shift could equally support a power-law departure starting at zero
roughness. Bradshaw also notes that standing eddies form behind objects at about
the same Reynolds number as the critical roughness value. However, the presence of
standing eddies does not cause a sudden change in the drag coefficient. In addition,
the departure from Stokes drag occurs for a roughness Reynolds number of the order
of unity, and if the drag over sparsely spaced elements follows an Oseen expansion,
the variation of the velocity shift B ′ should be proportional to k2 when k+ > 1.

3. Roughness functions
For a given roughness type, the behaviour in the transitional roughness regime

is known only from experiment. For a surface consisting of closely packed, nearly
mono-disperse sandgrain roughness, Nikuradse (1933) found that the flow was smooth
for k+

s � 5, transitionally rough for 5 <k+
s < 70, and fully rough for k+

s � 70. Here,
k+

s = ksuτ /ν, and ks was taken to be the average sandgrain height. Many other types
of roughness have been studied, and the behaviour in the transitional region can vary
widely (see, for example, figure 3 of Jiménez 2004).

Part of the difficulty in comparing roughness functions in the transitionally rough
regime is that the roughness height k is not well defined. Indeed, it seems obvious that
an arbitrary surface will need more than one characteristic scale to describe its effect
on the near-wall flow. Nevertheless, in order to compare different types of surfaces,
it is usual to prescribe an equivalent sandgrain roughness that relates krms for a
given surface to a particular sandgrain roughness height ks . The equivalent sandgrain
roughness is found by comparing the friction factor of the surface in question with
Nikuradse’s sandgrain data in the fully rough regime, independent of the particular
form of the roughness function in the transitional rough regime. As an example, Hama
(1954) suggests that for a machined surface with an approximately Gaussian distribu-
tion of roughness elements the equivalent sandgrain roughness is ks � 5krms . Similarly,
Zagarola & Smits (1998) suggested that for a honed and polished surface, ks � 3krms .

We have noted that the roughness functions for different surfaces can vary
widely. Surfaces such as those investigated by Nikuradse (1933), the mesh roughness
investigated by Perry & Abell (1977), and the tightly packed spheres studied by
Ligrani & Moffat (1986), all display friction factor curves that show an inflection
point, in that the friction factor is higher than the smooth pipe value at the same
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Reynolds number but falls below the fully rough value before rising to meet it. We will
describe this type of roughness function as ‘inflectional’, where it is recognized that
different roughness geometries can produce varying strengths of inflection. In contrast,
the roughness function proposed by Colebrook (1939) to describe the transitional
roughness behaviour of industrial surfaces approaches the fully rough friction factor
value from above. We will describe this type of roughness function as ‘monotonic’. The
differences in friction factor between inflectional and monotonic behaviour at the same
Reynolds number may depend on the ratio of roughness height to boundary layer
thickness, k/δ. For the studies showing inflectional roughness this ratio is typically
very small, but for the studies showing monotonic roughness it can be as high as 5%.

On the basis of laboratory experiments on rough pipes performed by Colebrook
& White (1937), and a large collection of friction factor data obtained from pipes
in commercial use, Colebrook (1939) proposed the following transition function to
describe the friction factor between the hydraulically smooth and fully rough regimes:

1√
λ

= −2 log

(
ks

3.71D
+

2.51

ReD

√
λ

)
. (3.1)

The equivalent sandgrain roughness for each surface was found by estimating the
friction factor in the fully rough regime (this process sometimes required extrapolation
since the data in the fully rough regime were not always available). Colebrook’s
roughness function satisfies two asymptotic conditions: one that it approaches
Prandtl’s smooth pipe friction factor curve as k+

s → 0, and the other that Nikuradse’s
fully rough behaviour is approached as k+

s → ∞. It is this roughness function that
is used in the Moody diagram (Moody 1944), and Perry et al. (2001) assumed that
honed pipes (as studied by Zagarola & Smits 1998 and McKeon et al. 2004) followed
this monotonic roughness behaviour.

Hama (1954) conducted a study of rough wall turbulent boundary layers with an
eventual goal of “. . . being able to predict the resistance for any combination of flow
and roughness characteristics”. Hama found that the roughness functions of his simu-
lated ‘natural roughness’ behaved like inflectional rather than monotonic Colebrook-
type roughness. The problem of poor correlation of experimental data with the
Colebrook curves is not new, as the discussion section of Moody (1944) makes clear.

Zagarola & Smits (1998) performed experiments in nominally smooth pipe flow
at Reynolds numbers from 31 × 103 to 35 × 106. However, Perry et al. (2001) raised
the possibility that roughness affected these ‘Superpipe’ experiments for Reynolds
numbers greater than about ReD =400 × 103. In contrast, Zagarola & Smits (1998),
by inspection of their values of 	U+, suggested that roughness did not become
important for ReD � 24 × 106. McKeon & Smits (2002) and McKeon et al. (2003)
showed that, although Zagarola & Smits (1998) had used an inaccurate correction
on the static pressure, the pipe was, by all criteria, smooth up to a Reynolds number
of at least 13.6 × 106. Nevertheless, the work of Perry et al. (2001) draws into the
spotlight the use and validity of the Colebrook functions to describe transitionally
rough flows, in this case for a honed and polished surface.

4. Experiment
The Princeton University/ONR Superpipe facility was used for all experiments.

This turbulent pipe flow facility uses compressed air at pressures up to 200 atm as
the working fluid to achieve Reynolds numbers from 31 × 103 to 35 × 106, as shown
in figure 1 and described in detail by Zagarola (1996) and Zagarola & Smits (1998).
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Figure 1. Princeton/ONR Superpipe facility.
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Figure 2. (a) Two-dimensional surface plot of the original Superpipe. Area shown is about
0.2mm × 0.25 mm, and the amplitudes are in µm. (b) Probability density function of surface
elevation.

The test pipe is located inside the closed-return pressure vessel, and it is approx-
imately 0.129 m in diameter and 25.9 m in length, so that the length-to-diameter ratio
exceeds 200. Two test ports are available at 160D and 196D downstream of the
contraction, and all profiles were measured at the downstream location during these
experiments. The pipe was constructed using 5 in. (129 mm) ID, 1/2 in. (12.7 mm)
thick drawn aluminum tube. Six sections of tube, approximately 4.6 m in length, were
connected and the centreline axis was aligned to within ±1.25 mm over a distance
of 30 m using the alignment procedure described by Zagarola (1996). Since the pipe
sections were connected during honing, the maximum step measured at each joint
during installation was about ±0.025 mm over the entire length of the pipe, negligibly
small according to Zagarola (1996).

The pipe surface roughness was designed to be geometrically similar to the surface
used by Zagarola & Smits (1998) and McKeon et al. (2004) while preserving a low
krms/D. A machined surface roughness is typically described using the roughness and
r.m.s. amplitudes, defined respectively as Ra =

∫ L

0
|y/L| dx, and Rq =(

∫ L

0
(y/L)2 dx)1/2,

where y is the surface height deviation from the mean level. For the original Superpipe
surface, comparator plates indicated that Ra ≈ 0.15 µm. To better define the geometry
of the surface roughness, a non-interfering, two-dimensional optical measurement was
made of the original Superpipe surface, as shown in figure 2. From this image, it is
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Figure 3. (a) Two-dimensional surface plot of the new rough pipe. Area shown is about
0.8 mm × 1.2 mm, and the amplitudes are in µm. (b) Probability density function of surface
elevation.

clear that a particular wavelength has been imparted to the surface as a result of the
honing process. However, it can also be seen that the probability density function of
the surface elevation closely resembles a normal distribution, with a skewness of only
−0.31, and a flatness of 3.6. The data give Ra = 0.116 µm and Rq =0.15 µm, in good
agreement with the original comparator plate measurements.

One other useful measure that is relevant to the pipe surface design is the high
spot count (HSC), which is the number of peaks per unit length that exceed a certain
threshold. Using a threshold value for the peak counts equal to Rq results in a mean
wavelength, defined as λHSC = 1/HSC of 0.01 mm. Therefore the ratio of roughness
height to wavelength was very small in the original Superpipe experiments (�1/62),
and raises the question as to whether traditional concepts such as form drag behind
discrete objects can be used to describe the flow field over such a surface.

The new rough pipe was designed using the Colebrook roughness function so that
the flow was expected to be smooth up to ReD � 500 × 103, and fully rough for
ReD > 8 × 106. A surface with an equivalent sandgrain roughness value of ks = 7.6 µm
appeared to satisfy these requirements. Using ks � 3krms , as suggested by Zagarola &
Smits (1998), gives krms = 2.5 µm, and the new pipe was honed to obtain this roughness
and an appropriately scaled λHSC.

Figure 3 shows a two-dimensional plot of the surface elevation, generated using an
optical scanner of the new surface. For this surface, Rq =2.5 µm and Ra =1.92 µm.
The surface skewness was Sk = 0.31 and the flatness was 3.43. Again, these results
suggest that the roughness distribution is close to being Gaussian. Using a threshold
value for the peak counts equal to Rq gives λHSC = 90 µm, and an amplitude-to-
wavelength ratio of � 1/37. Although the rough surface is not geometrically identical
to the original Superpipe smooth surface, it is expected that the roughness scaling for
this surface will reflect closely the behaviour of the smooth Superpipe at equivalent
k+

s conditions since both surfaces show nearly Gaussian roughness distributions.

5. Measurement techniques
Mean velocity profiles were taken 196D downstream of the test pipe inlet. A

removable oval shaped plug, 100 mm × 50 mm wide was inserted into the test pipe,



274 M. A. Shockling, J. J. Allen and A. J. Smits

to which the probe traverse assembly was attached. The interior surface of the plug
formed a smooth fit with the pipe surface, and the plug was in place during honing,
ensuring surface continuity. Two Pitot probes similar in design to those of Zagarola &
Smits (1998) were used for the velocity profile measurement, with diameters of 0.64 mm
and 0.43 mm. The probes were tested against a United Sensor standard probe in a large
atmospheric wind tunnel, demonstrating agreement within 0.2 %. Two 0.40 mm static
pressure taps were located on the plug surface to serve as the reference pressure for
all measurements. The velocity profile consisted of 48 points, spaced logarithmically.
Sampling time of the differential pressure signals was 90 s at 50 Hz for each point in
the velocity profile. Five points were taken past the centreline to demonstrate flow
symmetry. Twenty-one 0.79 mm diameter static pressure taps, spaced 165.1 mm apart,
were used to determine the pressure gradient. An Acurite linear encoder provided
probe location measurements with a resolution of ±5 µm. Forward and reverse travel
of the probe, a total distance of about 150 mm, was achieved with a repeatability
within 25 µm (less than 4 % of the larger Pitot probe diameter).

Owing to the large range of differential pressures encountered in the experiment,
several pressure transducers were used. For the tests at atmospheric pressure, MKS
Baratron transducers were used and placed external to the pressure vessel. These
1Torr and 10 Torr transducers had an uncertainty of ±0.2 % full scale. For the
pressurized tests, Validyne DP-15 strain-gauge transducers were used and were located
inside the pressure vessel. The ranges of these sensors were 0.2 p.s.i.d. (1380 Pa),
1.25 p.s.i.d. (8600 Pa), 5 p.s.i.d. (34 500 Pa), and 12 p.s.i.d. (83 000 Pa). All of the Validyne
transducers were accurate to ±0.5 % of full scale and calibrated against industry
standards. Temperature readings in the pressure vessel were taken using a standard
Chromel–Alumel thermocouple interfaced with an Omega DP-41-TC-AR indicator,
accurate to ±0.1 %. The ambient pressure for the atmospheric tests was recorded using
a mercury manometer, accurate to ±35 Pa. When the pipe was pressurized, the internal
pressure Pabs was measured with one of two sensors. At pressures below 3.4 atm
(3.4 × 105 Pa), an Omega transducer calibrated to an accuracy of ±350 Pa was used,
and for the higher pressure tests, up to 170 atm (17 × 106 Pa), a Heise pressure gauge
was used, accurate to ±3500 Pa. A PC equipped with a National Instruments BNC-
2110 DAC card was used to collect data and control the experiment, which was fully
automated with LabVIEW software. The typical duration for an experiment was
2.5 h, including the 21-point pressure gradient measurement and 48-point velocity
profile, with appropriate settling time between points. Air temperature in the pipe
during an experiment was kept constant to within ±0.6K.

6. Data analysis
To deduce the velocity from measurements using a Pitot probe and a wall static

pressure tap, a number of corrections need to be made. These corrections are due
to the effects of viscosity, turbulence level, velocity gradient, presence of a wall, and
viscous effects on the static tap reading. For a full description of the correction
techniques see Chue (1975) and McKeon et al. (2003).

The effects due to the presence of a velocity gradient were dominated by the
displacement of the streamlines, and the data were corrected using the method
suggested by McKeon et al. (2003), where the apparent position of a probe of
diameter d is displaced away from the wall by an amount 	y/d according to a local
non-dimensional velocity gradient

α =
dU

dy

d

2U
, (6.1)
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such that 	y/d = 0.15 tanh(4
√

α). This relationship approaches that of MacMillan
(1956) for large velocity gradients, where 	y/d = 0.15, and has the advantage over
the MacMillan correction that it does not apply a correction when there is zero shear.

As the probe approaches the surface, the extent of the streamline displacement will
depend not only on the local shear but also on the presence of the wall. Corrections
for this effect were applied using the displacement correlations proposed by McKeon
& Smits (2002) for y/d < 2, where

δw

d
=

⎧⎨
⎩

0.150, d+ < 8,

0.120, 8 <d+ < 110,

0.085, 110 <d+ < 160.

(6.2)

The correction was applied such that yc = y + δw , where yc is the corrected location
associated with the velocity measurement.

In general, the pressure measured using a static tap will tend to overestimate the
actual static pressure at the wall since the flow over the static tap will be deflected
into the pressure tapping hole. The magnitude of this error depends primarily on the
static port Reynolds number. McKeon et al. (2003) conducted an extensive series of
tests and showed that, in contrast to the findings of Shaw (1960), the error continues
to increase with Reynolds number. The corrections proposed by McKeon et al. (2003)
were used to correct all data presented here.

For the present experiment, differences between the correction method of
MacMillan (1956) and McKeon et al. (2003) were within experimental uncertainty,
and the use of a MacMillan correction as opposed to that used here does not influence
the behaviour shown in § 7.

Perry et al. (2001) interpreted the original smooth Superpipe data with additional
turbulence corrections based on measurements of Perry, Henbest & Chong (1986),
Abell (1974), and Durst, Jovanovic & Sender (1995). Such a correction requires an
accurate turbulence intensity profile, which is not known for this surface. Without
adequate information to appropriately correct for turbulence intensity, we present
here the data only corrected for Pitot and static tap error. Also, it is expected that
the turbulence intensity correction is much smaller than the Pitot and static tap
corrections. Zagarola & Smits (1998) reported corrections typically on the order of
0.3 % of the local velocity for high-Reynolds-number experiments and a maximum
correction less than 0.6 %, which occurred at low Reynolds number.

An additional source of uncertainty in the static pressure tap reading comes from
roughness effects very near the tap. Based on the static pressure taps used to determine
the axial pressure drop in this pipe, the uncertainty in any individual static tap was
approximately ±0.2 % at the highest Reynolds number of ReD = 21.2 × 106 (see
Shockling 2005).

A direct test of these correction techniques comes from the ability to collapse data
using different size Pitot probes onto the same velocity profile. Figure 4 shows a
comparison between the two probes (0.64 mm and 0.43 mm), for four different tests in
the smooth regime, in the range 68 × 103 � ReD � 116 × 103, after the application of
the shear corrections of McKeon et al. (2003) and the static correction of McKeon &
Smits (2002). The agreement near the wall, where the corrections are most significant,
is very satisfactory.

Sources of experimental uncertainty include estimating the pressure gradient from a
linear fit to measurements of the wall pressure at 21 ports, finding the average or bulk
velocity using a curve fit to the near-wall data to represent the velocity profile from
y = 0 to the first data point, the uncertainty in determing the density and viscosity, and
the uncertainty in each pressure transducer. The contributions to the total uncertainty
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Figure 4. Corrected velocity profiles for two probe sizes, 0.64 mm and 0.43mm, for
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in λ, dp/dx, Ū , and Pabs are summarized in figure 5. The large increases in Ū and Pabs

uncertainty occur when switching from one pressure transducer to another as the pres-
sure in the facility is increased. A full uncertainty analysis is given in Shockling (2005).

7. Results
7.1. Friction factor

Figure 6 shows the friction factor in the pipe over the full range of Reynolds number.
Note that error bars have only been shown on λ and not on ReD , which shows
negligible error on a semi-logarithmic plot. The data agree well with the smooth curve
relationship of McKeon et al. (2005) (equation (2.4)) up to ReD � 1.5 × 106, where the
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Figure 6. Friction factor λ for the present surface, compared with the rough-all relations
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Figure 7. Friction factor λ for the present surface, comparing the data using corrections as
described in § 6 and the data without any corrections.

friction factor begins to depart from the smooth curve, reaching a local minimum of
λ� 0.0106 in the region 3.1 × 106 <ReD < 4.0 × 106. The friction factor then rises to a
constant value of λ= 0.0108 for ReD > 10 × 106. The equivalent sandgrain roughness
for this surface, defined by the friction factor in the fully rough regime, is ks = 7.4 µm
= 3krms , in good agreement with Zagarola & Smits’s (1998) estimate ks � 3krms for the
smooth pipe data.

Figure 7 shows a comparison of the friction factor as calculated with the prescribed
Pitot and static corrections to the friction factor without any corrections applied (for
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Figure 8. Velocity profiles over the full Reynolds number range.
——, U+ = (1/0.421) ln y+ + 5.60.

a complete set of uncorrected and corrected data, see Shockling 2005, Appendices A
and B). The maximum discrepancy between the two data sets is approximately 1.5%,
occurring at Re � 16 × 106. The inflectional behaviour is effectively diminished by the
applied corrections, and the difference between the corrected and uncorrected data sets
is sufficiently small such that the inflectional phenomenon is beyond the magnitude
of the correctional method. Since a turbulence intensity correction is expected to be
smaller than the Pitot and static corrections, the inflectional behaviour remains.

The Colebrook curve corresponding to ks = 7.5 µm is also shown in figure 6. Clearly,
the Colebrook curve makes a poor prediction for the transitionally rough behaviour
of this surface. At the point of departure from the smooth regime, at ReD � 1.5 × 106,
the Colebrook relation overestimates the friction factor by approximately 10%. The
transitional regime is characterized by an inflectional curve, similar to the behaviour
of the sandgrain roughness tested by Nikuradse (1933) and shown in figure 6 for
R/ks = 507. This result is somewhat unexpected because honed surfaces are often
classified as natural or commercial roughness, and are therefore expected to follow a
Colebrook, or monotonic, roughness behaviour as assumed by Perry et al. (2001).

7.2. Velocity profile: inner scaling

A more sensitive indicator for the effects of roughness is the behaviour of the velocity
profiles. Figure 8 shows the velocity profiles for the entire Reynolds number range of
the experiment. Figure 9 highlights the velocity profiles in the smooth regime; that is,
where the friction factor lies on the smooth-wall correlation of McKeon et al. (2004)
(equation (2.4)). This includes all data for ReD < 1.6 × 106. Zagarola & Smits (1998)
and McKeon et al. (2004) found that the region y+ < 600 was best described by a
power law of the form U+ = 8.48y+(0.142), and a similar phenomenon is seen here in
that a small undershoot below the log law is seen near the wall. For y+ � 600, the
profiles show a region of logarithmic behaviour below the wake function, also in
agreement with the earlier results of the smooth pipe. This is seen further in figure 10,
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Figure 9. Velocity profiles in the smooth regime. - - - -, U+ = 8.48y+(0.142);
——, U+ = (1/0.421) ln y+ + 5.60.
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Figure 10. Velocity profiles in the smooth regime showing the logarithmic region and the
wake function. - - - -, U+ = 8.48y+(0.142); ——, U+ = (1/0.421) ln y+ + 5.60.

although only one profile in the smooth regime was of high enough Reynolds number
to demonstrate a significant region of logarithmic behaviour.

Figure 11 shows the velocity profiles in the transitional and fully rough regimes.
The downward shift with increasing Reynolds number is as expected.

Zagarola & Smits (1998) and McKeon et al. (2005) calculated the value of κ by
fitting the friction factor data such that

1√
λ

= C1 log(ReD

√
λ) + C2, (7.1)
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Figure 11. Velocity profiles in the transitional and fully rough regime.
——, U+ = (1/0.421) ln y+ + 5.60.

104 105 106
6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

ReDλ1/2

1
λ1/2

Rough pipe
1/κ slope

–––

Figure 12. Friction factor relationship with Reynolds number as predicted by equation (7.1)
in the smooth regime: —–, current data; - - - -, slope of 1/κ =1/0.421.

where

C1 =
1

κ

1

2
√

2 log(e)
. (7.2)

This was shown to eliminate the variation in the log- law slope among individual
experiments. For a rough pipe, κ cannot be found in the same way since λ rises
above the smooth curve such that C2 in equation (7.1) is no longer Reynolds
number independent. Nonetheless, figure 12 shows the good agreement of the current
hydraulically smooth data with the slope predicted by equation (7.1).

Shockling (2005) found κ and the value of ψ = U+ − 1/κ ln y+ by a least-squares
fit to the logarithmic region of each profile (y+ � � 150). Note that for a smooth
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Figure 13. Hama roughness function. - - - -, Colebrook roughness function equation (3.1),
with ks = 7.4 × 10−6 m; ——, 	U+ determined using McKeon’s et al.’s (2004) constants.

surface, ψ = B , where B is the additive constant in the log law. The values for κ (at
all Reynolds numbers) and ψ (in the smooth regime) agreed well with the values
given by McKeon et al., but the data are more scattered due to a higher level of
experimental uncertainty in the presence of roughness.

The Hama roughness function is shown in figure 13 as a function of k+
s . Here, 	U+

was determined by finding the best fit of the data to the log law, by fitting to the
established log law given by McKeon et al. (2004) with the assumption that κ =0.421
and B = 5.6. Here, the points in the transitional region follow a curve that more
closely resembles the inflectional roughness of Nikuradse (1933) than the monotonic
roughness of Colebrook (1939).

Perry et al. (2001) claimed that roughness effects were evident in the smooth
Superpipe at values of k+

s as low as 0.05. This conclusion was based principally on
the assumption that honed surface roughness displays a Colebrook-type transitional
behaviour. The data presented here show that honed surface roughness does not
deviate from hydraulically smooth conditions until k+

s � 3.5, which occurs at a pipe
Reynolds number that is about two orders of magnitude higher. The precise value of
ks for the original Superpipe experiment is unknown since the fully rough condition
was not attained in that experiment. Nevertheless, an estimate can be made of the
point of departure from smooth conditions by assuming that ks � 3krms as found here
for a geometrically similar surface. We find that the original Superpipe is expected
to demonstrate hydraulically smooth behaviour for ReD � 27 × 106. By comparison,
McKeon et al. (2004) analysed the velocity profiles to show that the Superpipe data
were smooth, at a minimum, for ReD � 13.6 × 106. The original work by Zagarola &
Smits (1998) suggested that the pipe was smooth up to Reynolds numbers of 24 × 106,
in good agreement with the conclusion made here.

Figure 14 shows the velocity profiles shifted by the appropriate 	U+ from figure 13.
With this shift applied, the profiles collapse onto the log law. Further evidence of
this is seen in figure 15, in which the wake function, y/R > � 0.15, has been removed
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Figure 14. Velocity profiles shifted by the roughness function as given in figure 13.
——, U+ = (1/0.421) ln y+ + 5.60.
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Figure 15. Velocity profiles shifted according to the values presented in figure 13. Wake
functions have been removed to evaluate log law collapse. - - - -, U+ = 8.48y+(0.142); ——,
U+ = (1/0.421) ln y+ +5.60.

from the profiles. Agreement with the log law in the outer region, and the power law
in the inner region, with the constants found by McKeon et al. (2004), is excellent.

Figure 16 shows the velocity shift in terms of the Nikuradse roughness function
B ′, where U+ = (1/κ) ln(y/ks) +B ′. While the inflectional behaviour shown by the
honed surface is not as pronounced as the sandgrain roughness of Nikuradse (1933)
or tightly packed spheres of Ligrani & Moffat (1986), it clearly possesses a point of
inflection. The current honed surface appears to reach fully rough conditions at a
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Figure 17. Outer scaling for 349 × 103 � ReD � 21.2 × 106. Solid line: −(1/0.421) ln η + 1.20.

slightly lower roughness Reynolds number, k+
s , which may be an effect of the random

variation in surface elevation; honed roughness has a nearly Gaussian roughness
distribution, whereas the roughness elements used by Ligrani & Moffat (1986) and
Nikuradse (1933) had an extremely narrow bandwidth and would not necessarily
possess a Gaussian distribution.

7.3. Velocity profiles: outer scaling

Figure 17 shows a collection of velocity profiles for Re � 349 × 103 scaled on outer
flow coordinates, y/R. It appears that the velocity profiles collapse well, as expected
according to Townsend’s outer flow similarity hypothesis for rough-wall flows. The
collapse in outer layer coordinates is comparable to that demonstrated by Zagarola
& Smits (1998) for the smooth Superpipe data and by Flack et al. (2005) in their
rough-wall boundary layer studies.
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7.4. Moody diagram revision

The inflectional transitional roughness behaviour of the current surface differs
qualitatively from the monotonic transitional behaviour used in the Moody diagram,
and a noticeable departure from hydraulically smooth conditions occurs at a relative
roughness approximately two orders of magnitude larger than that predicted by the
Moody diagram. For this reason, a revision is needed to better represent honed
surfaces (and surfaces of similar geometry and industrial interest) with small relative
roughness. A technique to calculate the resistance curve for a honed surface of
arbitrary roughness height is detailed in Allen, Shockling & Smits (2005).

8. Conclusions
Honed surface roughness in fully developed turbulent pipe flow was investigated

over the Reynolds number range 57 × 103 � ReD � 21.2 × 106, demonstrating
hydraulically smooth, transitionally rough, and fully rough behaviour. The
transitionally rough regime was found to follow the inflectional behaviour first
observed by Nikuradse (1933) in pipes coated with sand grains of a narrow distribution
of sizes. The friction factor did not follow the monotonic behaviour expressed by
Colebrook’s (1939) roughness function that forms the basis for the Moody diagram.

The equivalent sandgrain roughness of the surface was found to be ks � 3krms , in
agreement with the suggestions of Zagarola & Smits (1998) for a surface produced
by a similar honing process. The flow showed the first symptoms of roughness when
k+

s ≈ 3.5, contrary to the suggestions implicit in the Moody diagram and the arguments
posed by Perry et al. (2001). It would appear that this is the critical roughness
height for honed surfaces with k � D (or k � δ). On this basis, it is determined
that the original smooth Superpipe exhibits hydraulically smooth behaviour for
ReD � 27 × 106. For all conditions of roughness, logarithmic scaling was apparent
at higher Reynolds numbers with the same constants determined by McKeon et al.
(2004) for smooth pipes. An excellent collapse of the velocity profiles in outer scaling
provides strong support for Townsend’s hypothesis, at least for very small values of
krms/D. The magnitude of the downward shift in the velocity profile, as measured by
the Hama roughness function, was seen to follow transitional behaviour qualitatively
similar to sandgrain roughness, again in contrast with Colebrook (1939).
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